A CASE STUDY OF THE 24 JUNE 2003 BOW ECHO EVENT IN IOWA DURING BAMEX

by

Dustin W. Phillips

A THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in The Department of Atmospheric Science to The School of Graduate Studies of The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2006
In presenting this thesis in partial fulfillment of the requirements for a master’s degree from the University of Alabama in Huntsville, I agree the Library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by my advisor or, in his absence, by the Chair of the Department or the Dean of the School of Graduate Studies. It is also understood that due recognition shall be given to me and The University of Alabama in Huntsville in any scholarly use which may be made of any material in this thesis.

__ ______________________________________
(Student Signature) (Date)
THESIS APPROVAL FORM

Submitted by Dustin W. Phillips in partial fulfillment of the requirements for the degree of Master of Science in Atmospheric Science and accepted on behalf of the Faculty of the School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of the University of Alabama in Huntsville, certify that we have advised and/or supervised the candidate on the work described in the thesis. We further certify that we have reviewed the thesis manuscript and approve it in partial fulfillment of the requirements of the degree of Master of Science in Atmospheric Science.

_______________________________________ Committee Chair

(Date)

Department Chair

College Dean

Graduate Dean
ABSTRACT
School of Graduate Studies
The University of Alabama in Huntsville

Degree: Masters of Science College/Dept: Science/Atmospheric Science

Name of Candidate: Dustin W. Phillips
Title: A Case Study of the 24 June 2003 Bow Echo Event in Iowa during BAMEX

An analysis of a bow echo even that occurred on 24 June 2003 over northwest Iowa is described with analyses of Doppler radar observations, plus special data sets acquired by the Mobile Integrated Profiling System (MIPS) and the Eldora Doppler radar on board the Naval Research Laboratory P-3 aircraft. Two primary goals are addressed: (1) The nocturnal boundary layer in advance of the bow echo, and the changes to the NBL produced by the bow echo, are defined. (2) A description of the internal storm structure from an analyses of the Doppler radar and profiler observations is presented.

The emergence of the bow echo was correlated with the arrival of an inferred gravity wave that originated from intense deep convection on the west edge of the MCS, and then moved eastward through the low-level cold pool. The maximum radial velocity (exceeding 40 m s\(^{-1}\)) was measured by the Des Moines WSR-88D radar immediately after this wave reached the main convective line. The peak updraft within deep convection, \(\sim 20\) m s\(^{-1}\), occurred about 10 minutes after the gust front arrival while the peak down draft of \(\sim 8\) m s\(^{-1}\) occurred 15 minutes after the gust front. The maximum surface wind gust of 24 m s\(^{-1}\) was measured 2 minutes after this down draft. Airborne Doppler radar documented a shallow outflow layer with radial velocities approaching 30 m s\(^{-1}\) at 1 km AGL, as well as strong rotations within the gust front and anvil during the decaying stages of the bow echo.

Abstract Approval:

Committee Chair
Department Chair
Graduate Dean
ACKNOWLEDGEMENTS

The work described in this thesis would not have been possible without the assistance of a number of people who deserve special mention. First, I would like to thank Jesus, My Lord and Savior for helping me write the words in this thesis. Without Him none of this would have been possible. Second, I would like to thank Dr. Kevin Knupp for this research opportunity, for his suggestion of the research topic, and for his patience and guidance throughout all stages of the work. Thirdly, I would like to thank Dr. Wen-Chau Lee for his assistance and guidance with the editing and processing of the ELDORA data. Lastly, I would like to thank Justin Walters for helping out with programming, with discussions, and with anything I needed help with. Over the past few years many others have kindly offered background and discussions on various aspects of my research.

This project was funded by the National Science Foundation under Grant ATM-0239889.

Thank you to my family and friends for their continued support and patience throughout this process.

To Nancy, Kirsty, Dad, and Mom for being there loving, supporting, and encouraging me along the way – I could not have done it without all of you!
TABLE OF CONTENTS

List of Figures..ix
List of Tables..xv

CHAPTER

I. INTRODUCTION...1

II. BACKGROUND...3

III. OVERVIEW OF THE BAMEX PROGRAM...16
 3.1 BAMEX Overview...16
 3.2 Instrumentation...18
 3.2.1 The MIPS ...18
 3.2.2 NCAR M-GLASS Sounding Units...24
 3.2.3 NCAR Electra Doppler Radar (ELDORA)...25
 3.2.4 National Lightning Detection Network (NLDN)...29
 3.3 Characteristics of the Experimental Domain..30

IV. MESOSCALE SETTING...33
 4.1 Synoptic Overview...33
 4.2 Mesoscale Surface Analyses..37
 4.3 Special Soundings...43
 4.3.1 Composite Sounding..43
 4.4 MIPS 915 MHz Profiler Analysis...45
 4.5 Slater, Iowa 404 MHz Profiler...46

V. THE PRE-STORM NOCTURNAL BOUNDARY LAYER..49
 5.1 Nocturnal Boundary Layer (NBL) Properties..49
 5.2 MIPS Measurements of Gravity Waves in the Pre-Storm NBL ..51
 5.3 Mean Quantities...53
5.3.1 Potential Temperature ... 54
5.3.2 Mixing Ratio ... 56
5.3.3 Equivalent potential temperature (θ_e) 57
5.3.4 NBL Height .. 58

VI. STORM SCALE ANALYSIS .. 61

6.1 Overview ... 61

6.1.1 GOES Infrared Sequence ... 61
6.1.2 Des Moines WSR-88D ... 62
6.1.3 MIPS Surface Station Time Series ... 67

6.2 Kinematics Determined from Airborne Doppler – ELDORA Analysis 67

6.2.1 Leg 1 (0620 – 0626 UTC) ... 69
6.2.2 Leg 2 (0630 – 0636 UTC) ... 73
6.2.3 Leg 3 (0646 – 0652 UTC) ... 78

6.3 MIPS Analysis .. 84

6.3.1 915 MHz Profiler ... 84
6.3.2 High Resolution 915 MHz Winds .. 86
6.3.3 Drop Size Distribution .. 87
6.3.4 Derivation of w .. 89
6.3.5 Lightning and Electrical Behavior ... 92
6.3.6 The Cold Pool .. 96

VII. DISCUSSION, SUMMARY, & CONCLUSION ... 106

7.1 Discussion .. 98

A. Overall Scientific Objectives of BAMEX 98
B. Environmental Objectives of BAMEX 98
C. System Morphology and Evolution Objectives 100

7.2 Summary ... 105

7.3 Errors and Improvements ... 106
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Number</th>
<th>Figure Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Idealized morphology of an isolated bow echo associated with strong and extensive downbursts. Figure adapted after Fujita 1978 (Atkins et al. 2004).</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) Base reflectivity and (b) relative velocity from the Paducah WSR-88D radar at 18:48 GMT for 5 May 1996. Velocities are presented relative to a storm motion of 33 kts from 280 deg.</td>
<td>5</td>
</tr>
<tr>
<td>2.3</td>
<td>Geopotential height and radiosonde winds at 500 hPa along with surface cyclone center position and frontal analysis at 1200 UTC of two severe bow echoes episodes: (a) weakly forced case of July 19, 1983 (left or top), and (b) moderately forced case of June 4, 1993 (right or bottom). Stippled region outlines area of damaging winds during each case. Curved dashed line denotes position of primary convective line at 1200 UTC (from Evans and Doswell, 2001).</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Total number of derechos occurring in during the months of May through August for the period 1980-1983 (from Johns and Hirt 1987).</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic vertical cross section of a mature convective system with (a) descending rear-inflow jet and (b) an elevated rear-inflow jet. The updraft current is denoted by the yellow vector, with the rear-inflow current in denoted by the blue vectors. The shading denotes the surface cold pool. The thin, circular arrows depict the most significant sources of horizontal vorticity, which are either associated with the ambient shear or which are generated within the convective system, as described in the text. Regions of lighter or heavier rainfall are indicated by the more sparsely or densely packed. The scalloped line denotes the outline of the cloud. (adapted from Weisman, 1993).</td>
<td>10</td>
</tr>
<tr>
<td>2.6</td>
<td>Radar reflectivity data from 10 June 2003 from the KLSX radar at 2059, 2159, 2300, and 2356 UTC. Solid and thick-dashed lines represent the locations of radar-detected tornadic and nontornadic mesovortices, respectively. Start and end times (UTC) for all mesovortices are also shown. Thick solid lines along the tornadic mesovortex paths represent the location of observed tornado damage. Thin-dashed lines are county boundaries. The long-dashed line separates the 2059 and 2159 UTC radar data (from Atkins et al. 2004).</td>
<td>11</td>
</tr>
</tbody>
</table>
2.7 Continued: KLSX radar reflectivity (dBZ) and ground-relative radial velocity (m s\(^{-1}\)) data in plan view (0.5°), and vertical cross sections from 2230 to 2300 UTC, every 5 min. Radial velocities are contoured with solid dashed contours representing flow away from (toward) the radar. Radial velocities are contoured every 10 m s\(^{-1}\) (values greater than 30 m s\(^{-1}\) are shaded) in plan view and every 11 m s\(^{-1}\) (values greater than 40 m s\(^{-1}\) are shaded) in the vertical cross sections. Within the plan view plots, the thick black line represents the location of the vertical cross section at the respective times. Rear in-flow jet is denoted by the black arrow and labels (from Atkins et al. 2004) 14-15

3.1 Schematic deployment for Bow Echo Case during BAMEX (from Davis et al., 2004) 17

3.2 Scanning geometry of the ELDORA Doppler radar. The antenna scans are 18° forward and aft from the aircraft’s track (Jorgensen et al. 1996) 26

3.3 Track of the NRL P-3 Aircraft. Leg 1 begins at the top; leg 2 is next, followed by leg 3. The area in red is a location where the aircraft was not close enough to the system for a valid dual Doppler comparison. The area used in this case study is located between the solid black lines 27

3.4 Satellite view of the domain area. Fort Dodge is located in the upper right. Other locations are marked on the map 30

3.5 Overview of the locations of the Ground Based Instruments used in the case study of the June 24 2003 Bow Echo Case 31

4.1 Surface plot for 00UTC on 24 June 2003 33

4.2 Analysis 0000 Z RUC analyses of 500 mb wind (kts), temperature (°C), and height (mb) at 0000 Z 24 June. The region of interest is contained within the elliptical area. The MIPS location is denoted by the star 34

4.3 (a) RUC 00Z Analysis of CAPE from 0000 UTC on 24 June. (b) RUC Analysis of Q-Vectors at 700 mb for 0000 UTC on 24 June. (c) The 850 mb heights, wind, and temperature for 0000 UTC on 24 June 35

4.4 GOES IR images from 0045 and 0245 UTC for 24 June 2003. The Circular area is the location of initiation. Within 2 hours convection had organized into a large cluster of convective cells. MIPS is located at the star 36

4.5 Figure 4.5 shows the surface conditions over the domain for at 0000 UTC on 24 June 2003 40
4.6 Figure 4.6 shows the surface conditions over the domain for at 0600 UTC on 24 June 2003. Note the change in wind direction from southerly to southeasterly during this 6 hour period.

4.7 Contours of pressure (black) and equivalent potential temperature (gray) for the domain of interest. Intervals are 2 mb for pressure and 2 K for θ_e. The top panel (a) is an analysis at 00 UTC, the bottom panel (b) is an analysis at 06 UTC.

4.8 Skew-T sounding plot from the MGLASS 1 location at 0450 UTC on 24 June. This sounding was released 76 km from the MIPS location. The CAPE value was 2421 J kg$^{-1}$, with a surface lifted index of -10.1, indicating an unstable air mass at this time.

4.9 Figure 4.9 MIPS 915 MHz Profiler SNR time height series. Notice the inversion layer denoted in the square area. Between 0600 UTC and 0640 UTC this layer oscillated upward and downward. This layer is also visible in the MGLASS sounding.

4.10 The Slater, IA 404 MHz Wind Profiler Plot. Time proceeds from right to left starting at 00 UTC on 24 June and ending on 09 UTC on 24 June. The profiler is located 86 km south of the MIPS location. A full barb represents 10 m s$^{-1}$.

5.1 Time height series of 915 (a) SNR, (b) vertical velocity (w), and (c) storm relative horizontal winds (V_h). Cloud base from the ceilometer is denoted by the solid line. The oscillating inversion layer is shown by the dashed line in each panel.

5.2 Pressure time series from the MIPS surface station. Gravity wave GW1U is denoted by the dashed line, while gravity wave GW1L is denoted by the solid line. There is also an increasing trend in the pressure in the time series.

5.3 Schematic of gravity wave propagation effects on the inversion layer. Notice how the updraft and downdraft both yield negative values for the perturbation of heat flux.

5.4 Proposed mechanism for discrete propagation. Shallow cloud deck in panel b depicts the moist tongue, panel d depicts the results of deep subsidence gravity wave propagation through the NBL (Fovell et al. 2005).

5.5 Potential Temperature (10 min average) contour from the MPR. Gravity wave GW1L denoted by the circular area.

5.6 Mixing ratio calculated from the MPR. Data has been averaged over 10 minute periods. Gravity wave GW1L is denoted in the lower circular area. Waves GW1U and GW2U are denoted in the upper circular areas (From Figure 5.1).
5.7 Equivalent potential temperature calculated over 10 minute intervals from the MPR. Note that gravity wave GW1U as well as GW1L have large spikes in θ_e...

5.8 30 Minute vertical profiles of (a) θ, (b) τ_v, and (c) u & v. The panels on the left are averaged from 0530 to 0600 UTC and the panels on the right are averaged from 0600 UTC to 0630 UTC. From these plots the NBL depth (h) appears to be near 700 m during the first period, and near 860 m during the second time period. The u component is dashed, v is solid...

6.1 GOES-12 4-km resolution infrared images from 0045 – 0745 UTC. The locations of the cities of Fort Dodge, IA (FOD), and Des Moines, IA (DSM), as well as the MIPS location have been superimposed. Starting from the top right the cells initiate over South Dakota and mature as they move to the south and east over across Iowa. The coldest cloud tops pass over the MIPS location between 0545 and 0745 UTC.

6.2 Time Series of DMX WSR-88D Reflectivity. The gravity wave is shown in the circle area, while the surging bow echo is denoted within the boxed area. The MIPS location is given by the tip of the arrow. Range rings are placed every 15 km.

6.3 0640 UTC Z and V_r from the Des Moines WSR-88D radar during maximum reflectivity and velocity over the MIPS location. Max velocity is approximately 36 m s$^{-1}$ at the 0.5" elevation.

6.4 MIPS surface station plot. Data was recorded during 1-sec intervals, and has been quality controlled. The panels above are the time series plots for the following parameters (a) Temperature (°C) & Dewpoint, (b) wind speed (m s$^{-1}$), (c) Wind Direction, (d) Pressure (hPa), and (e) total precipitation (mm).

6.5 Eldora reflectivity and velocity scans for leg 1 over the MIPS system. Dual Doppler storm relative winds have been overlaid and are in units of m s$^{-1}$. (a) Z= 1 km, (b) Z = 5 km, and (c) Z = 10 km (AGL). Peak reflectivity at this time is 49 dBZ at 1km, and peak velocity values are 34 m s$^{-1}$ at 5 km. The red line denotes vertical cross section.

6.6 Vertical cross section from leg 1 of velocity data from the Eldora fore radar. The MIPS is located at the 0 point on the x-axis. (a) reflectivity (z), (b) Velocity (V_r), and (c) Vertical motion (w, m s$^{-1}$). Dual Doppler winds (V_h) are overlaid in units of m s$^{-1}$. Axis units are in km.

6.7 Eldora reflectivity and velocity scans for leg2 over the MIPS system. Dual doppler storm relative winds have been overlaid and are in units of m s$^{-1}$. (a) Z= 1 km, (b) Z = 5 km, and (c) Z = 10 km (AGL). Peak reflectivity at this time is 48 dBZ at 1km, and peak velocity values are -45 m s$^{-1}$ at 1 km.
6.8 Vertical cross section from leg 2 of velocity data from the Eldora fore radar. The MIPS is located at the 0 point on the x-axis. (a) reflectivity (z), (b) Velocity (V_z), and (c) Vertical motion (w, m s\(^{-1}\)). Dual doppler winds (V_h) are overlaid in units of m s\(^{-1}\). Axis units are in km.

6.9 Eldora reflectivity and velocity scans for leg1 over the MIPS system. Dual doppler storm relative winds have been overlaid and are in units of m s\(^{-1}\). (a) Z= 1 km, (b) Z = 5 km, and (c) Z = 10 km (AGL). Peak reflectivity at this time is 45 dBZ at 5km, and peak velocity values are -28 m s\(^{-1}\) at 1 km.

6.10 Vertical cross section from leg 3 of velocity data from the Eldora fore radar. The MIPS is located at the 0 point on the x-axis. (a) reflectivity (z), (b) Velocity (V_z), and (c) Vertical motion (w, m s\(^{-1}\)). Dual Doppler winds (V_h) are overlaid in units of m s\(^{-1}\). Axis units are in km.

6.11 915 MHz Profiler time-height cross sections of (a) SNR, (b) Doppler velocity, and (c) spectral width for 24 June 2003.

6.12 Time Height Series of MIPS Ceilometer. The top panel is ceilometer backscatter in units of dB. The bottom panel is backscatter in units of power. Heavy rain is denoted by the black color. The area in the circle shows how the atmosphere became more pristine after the passage of the bow.

6.13 915 MHz profiler high resolution ground relative winds. The gust front passage occurred at 0636 UTC and bow echo passage at the MIPS at 0645. Cloud base heights are shown by the black lines.

6.14 Disdrometer drop size concentration and rain rate time series from 0600 – 0800 UTC on 24 June. Note as the concentration of drops get smaller the rain rate decreases.

6.15 915 MHz reflectivity (top) and air motion (bottom). Air motion was greatest along the gust front and with the initial onset of deep convection. Maximum upward air motion was 13 m s\(^{-1}\) along the gust front. Maximum Downward motion was -5 m s\(^{-1}\).

6.16 NLDN data centered in a 10 km x 10 km domain from a) 0525-0626 UTC b) 0626-0646 UTC c) 0646-0656 UTC d) 0656-0706 UTC e) 0706-0726 UTC f)0726-0816 UTC. Negative strokes are denoted by X’s and positive strokes are denoted by ‘s. The MIPS is located in the center of the domain. Grid spacing centered on the MIPS in 2.5 km E-W and 3.5 km N-S spacing.

6.17 MIPS EFM Time Series. The gravity wave passage is denoted by the dashed line and gust front passage by the solid line. The neutral line is the black line across the time height series. Positive charge is above that line, and negative below it.
6.18 Total flash count for the period 0515 UTC – 0845 UTC on 24 June. Data collected from the Nation Lightning Detection Network and MIPS Electric Field Mill. Cloud-to-Ground (CG) is denoted by the red line, while Inter-Cloud is denoted by the blue line………………………………………………………….94

6.19 Cold Pool Analysis. (a) Environmental sounding released at 0450 UTC, (b) cold-pool sounding released at 0616, (c) thermodynamic profile (solid line is theta, dashed line is theta-e), and (d) the buoyancy profile (dark) and pressure profile (light) for this system………………………………………………………………………..95
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1 Characteristics of MIPS Surface Station</td>
<td>20</td>
</tr>
<tr>
<td>Table 3.2 Characteristics of the 915 MHz Doppler Profiler</td>
<td>23</td>
</tr>
<tr>
<td>Table 3.3 Joss-Waldvogel Disdrometer Specifications</td>
<td>24</td>
</tr>
<tr>
<td>Table 3.4 MGLASS Rawinsonde Specifications</td>
<td>25</td>
</tr>
</tbody>
</table>